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Fast Polynomial Root Finder - Part Three. 
By Henrik Vestermark (hve@hvks.com) 

 
 

Abstract:  
We elaborated in the part three paper on higher order method for finding Polynomial roots and 
devised a modified Halley method dealing efficiently with Polynomials with real coefficients. 
This paper is part of a multi-series of papers on how to use the same framework to implement 
different root finder methods. 
 

Introduction: 
In the first paper (part one), we developed a highly efficient and robust polynomial root-finder 
based on the Newton method, specifically designed for complex polynomial coefficients. In part 
two we elaborated on the change to dealing with Polynomials with real coefficients. In part three 
we looked at using the same framework to implement higher-order methods and discussed if we 
gain any advantages from using higher-order methods compared to the standard Newton method. 
  
  



Fast Polynomial Root Finder  - Part Three 

Page | 2    24 October 2023 
 

Contents 
Fast Polynomial Root Finder - Part Three. ..................................................................................... 1  

Abstract: .......................................................................................................................................... 1  

Introduction: .................................................................................................................................... 1  

Higher order method. ...................................................................................................................... 2  

Comparing Newton and Halley ...................................................................................................... 5 

What to Modify? ............................................................................................................................. 5  

The Implementation of the Halley Algorithm ................................................................................ 5 

The C++ code .................................................................................................................................. 7  

Example 1. ................................................................................................................................ 14  

Example 2. ................................................................................................................................ 15  

Example 3. ................................................................................................................................ 17  

Householder 3rd order method ...................................................................................................... 19 

How the higher orders method stacks up against each other ........................................................ 20  

Other Higher order method ........................................................................................................... 22  

Recommendation .......................................................................................................................... 22  

Conclusion .................................................................................................................................... 23  

Reference ...................................................................................................................................... 23  

 
 
 
 

Higher order method. 
The Newton method has a convergence rate of two meaning that for every iteration you double 
the number of correct digits. However, there exist other higher-order methods that have a 
convergence rate of 3, 4, 5 6, or even higher. One of them is the Halley method which has a 
convergence rate of three (or cubic). The cubic convergence rate indicates that we triple the 
correct number of digits per iteration. The Halley method uses an iteration based on the 
following recurrence:  
 
 

𝑥௡ାଵ = 𝑥௡ −
2𝑃(𝑥௡)𝑃′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ − 𝑃(𝑥௡)𝑃′′(𝑥௡)
 

 
Compared to our modified Newton: 
 

𝑥௡ାଵ = 𝑥௡ − 𝑚
𝑃(𝑥௡)

𝑃′(𝑥௡)
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We need to evaluate the second derivate of P(x) and do some extra arithmetic operations.  
 
Or sometimes we can write the Halley iteration as:  
 

𝑥௡ାଵ = 𝑥௡ −
𝑃(𝑥௡)

𝑃′(𝑥௡)
ቈ1 −

𝑃(𝑥௡)𝑃′′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ
቉

ିଵ

 

 

Where,  𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)
 is the usual Newton iteration multiplied with the Halley adjustment 

of:  

ቈ1 −
𝑃(𝑥௡)𝑃′′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ
቉

ିଵ

 

 
 
And are graphically shown below: 

 
 
As for the Newton method, we don’t use this version since it will show the same weakness as the 
original Newton step when dealing with roots with a multiplicity higher than 1 (multiple roots). 
 
In [8] they present a modified formula dealing with multiple roots: 
 

𝑥௡ାଵ = 𝑥௡ −
𝑃(𝑥௡)

𝑃′(𝑥௡)
ቈ
𝑚 + 1

2𝑚
−

1

2

𝑃(𝑥௡)

𝑃′(𝑥௡)

𝑃′′(𝑥௡)

𝑃′(𝑥௡)
቉

ିଵ

 

 
 
Since m represents the multiplicity of the root. It changes the Halley adjustment based on m, you 
would have to recalculate the Halley adjustment for each m.  
Below is an alternative slightly different modified version of the Halley method that also 
maintains the cubic convergence rate even for multiple roots but where m is placed outside 
making it easier to calculate since the Halley adjustment is unchanged.  
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𝑥௡ାଵ = 𝑥௡ −
𝑚 + 1

2

2𝑃(𝑥௡)𝑃′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ − 𝑃(𝑥௡)𝑃′′(𝑥௡)
 

 
Alternatively, it is written in another way: 
 

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 1

2

𝑃(𝑥௡)

𝑃′(𝑥௡)
ቈ1 −

𝑃(𝑥௡)𝑃′′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ
቉

ିଵ

 

 
 
Both formulas will work and maintain cubic convergence. 
 
Here is an example: 
 

 
For the first root x1~ -1.65, we start at ~ -0.8 and iterate along the real axis towards the root at ~ 
-1.65. Since we never leave the real axis, we don’t have to see a miniscule imaginary part in the 
result. The first root is deflated and we start a new search with the deflated polynomial x3-
9.650629191439387x2-1.0703897408530487x-24.233183447530717. We again start on the real 
axis around ~ -0.8 but this time we are near a saddle point and rotate into the complex plane. 
After 5 iterations we find the complex root ~  (-0.17-i1.54). We deflate the polynomial with its 
complex and complex conjugated root and end up with a first-degree polynomial that we solve 
directly and get x=10. 
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Comparing Newton and Halley 
 
To compare different methods with others we can use a well-known efficiency index to see how 
it stacks up against other derivative-based methods. 

The efficiency index is 𝑞
భ

೛, where q is the method convergence order and p are the number of 
polynomial evaluations for the method. For the Newton, method p is 2 since we need to evaluate 
both P(z) and P’(z) per iteration, and the Newton method has a convergence order of q=2 so we 

get Efficiency index= 2
భ

మ = 1.42 
 

For the Halley method, we need to evaluate P(x), P’(x), and P’’(x) for each iteration, we get 3
భ

య =
1.44 
Slightly larger than the Newton method but not enough that we should expect any measurable 
gain from using the Halley method. 
 

What to Modify? 
Compared to the Newton method (part two) we can luckily reuse most of the code already 
available with the Newton method. 
 
From Part Two, the Steps Include: 

1. Finding an initial point 
2. Executing the Newton iteration, including polynomial evaluation via the Horner method 
3. Calculating the final upper bound 
4. Polynomial deflation 
5. Solving the quadratic equation 

 
Ad 1,3,4,5) Will be identical and need no modification 
   
Ad 2) We can use the Horned method unchanged to evaluate P(x), P’(x), and P’’(x). Although 
we need to add another vector to hold the second derivative of P(x).  The variable step size to 
handle multiple roots can be changed from m to (m+1)/2m. Otherwise, we can again reuse the 
variable step size or reduce the step size and show it in both parts one and two.  
   

The Implementation of the Halley Algorithm 
This is the same source as in part two except for the change needed to evaluate the second 
derivative and perform the Halley step instead of the Newton step.  
 
The implementation of this root finder follows the method as layout in Part One.  
 

1) First, we eliminate simple roots (roots equal to zero) 
2) Then we find a suitable starting point to start our Halley Iteration, this also includes 

termination criteria based on an acceptable value of P(x) where we will stop the current 
iteration. 
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3) Start the Halley iteration 

a. The first step is to find the dxn= 
௉(௫೙)

௉ᇱ(௫೙)
ቂ1 −

௉(௫೙)௉ᇱ (௫೙)

ଶ௉ᇲ(௫೙)మ
ቃ

ିଵ

and of course, decide what 

should happen if P’(xn) is zero. When this condition arises, it is most often due to a 
local minimum and the best course of action is to alter the direction with a factor   
dxn=dxn(0.6+i0.8)k.  This is equivalent to rotating the direction with an odd degree of 
53 degrees and multiplying the direction with the factor k. A suitable value for k=5 is 
reasonable when this happens. 

b. Furthermore, it is easy to realize that if P’(xn)~0. You could get some unreasonable 
step size of dxn and therefore introduce a limiting factor that reduces the current step 
size if abs(dxn)>5·abs(dxn-1) than the previous iteration's step size. Again, you alter 
the direction with dxn=dxn(0.6+i0.8)5(abs(dxn-1)/abs(dxn)) if that happens. 

c. These two modifications (a and b) make his method very resilient and make it always 
converge to a root. 

d. The next issue is to handle the issue with multiplicity > 1 which will slow the third-
order convergence rate down to a linear convergence rate. After a suitable dxn is 
found and a new xn+1=xn-dxn   we then look to see if P(xn+1)>P(xn):  If so we look at a 
revised xn+1=xn-0.5dxn and if P(xn+1)≥P(xn) then he used the original xn+1 as the new 
starting point for the next iteration. If not then we accept xn+1 as a better choice and 
continue looking at a newly revised xn+1=xn-0.25dxn. If on the other hand the new 
P(xn+1)≥P(xn) we used the previous xn+1 as a new starting point for the next iterations. 
If not then we assume we are nearing a new saddle point and the direction is altered 
with  dxn=dxn(0.6+i0.8) and we use xn+1=xn-dxn as the new starting point for the next 
iteration. 
if on the other hand P(xn+1)≤P(xn): Then we are looking in the right direction and we 

then continue stepping in that direction using: 𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)
ቂ

௠ାଵ

ଶ௠
−

ଵ

ଶ

௉(௫೙)

௉ᇱ(௫೙)

௉ᇱᇱ(௫೙)

௉ᇱ(௫೙)
ቃ

ିଵ

 m=2,..,n as long as P(xn+1)≤P(xn)  and use the best m for the next 

iterations. The benefit of this process is that if there is a root with the multiplicity of 
m then m will also be the best choice for the stepping size and this will maintain the 
third-order convergence rate even for multiple roots. 

4) Processes a-d continue until the stopping criteria are reached where after the root xn is 
accepted and deflated up in the Polynomial. A new search for a root using the deflated 
Polynomial is initiated. 

 
In [2] they divide the iterations into two stages. Stage 1 & Stage 2. In stage 1 we are trying to get 
into the convergence circle where we are sure that the Halley method will converge towards a 
root. When we get into that circle, we automatically switch to stage 2. In stage 2 we skip step d) 

and just use an unmodified Halley step: 𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)
ቂ1 −

ଵ

ଶ

௉(௫೙)

௉ᇱ(௫೙)

௉ᇱᇱ(௫೙)

௉ᇱ(௫೙)
ቃ

ିଵ

 until the 

stopping criteria have been satisfied. In case we get outside the convergence circle, we switch 
back to stage 1 and continue the iteration. 
In [2] they use the following criteria to switch to stage 2 based on the theorem 7.1 from 

Ostrowski [3] that states if K is a circle with center 𝑤 −
௉(௪)

௉ᇱ(௪)
 And radius  ቚ

௉(௪)

௉ᇱ(௪)
ቚ 

Then we have guarantee convergence if the following two conditions are satisfied: 
 



Fast Polynomial Root Finder  - Part Three 

Page | 7    24 October 2023 
 

 𝑝(𝑤)𝑝ᇱ(𝑤) ≠ 0    𝑎𝑛𝑑 

2|
𝑝(𝑤)

𝑝′(𝑤)
| ∙ max

௭ఌ௄
|𝑝ᇱᇱ(𝑧)| ≤ |𝑝′(𝑤)| 

 

 

Although this is originally the check for Newton convergence, we use it also for the Halley 
iterations with initial value w will lead to a convergence of zero within the circle K. To simplify 
the calculation we make 2 substitutes, since max

௭ఌ௄
|𝑝ᇱᇱ(𝑧)| ≈ |𝑝′′(𝑤)| and instead of p”(w) we 

replace it with a difference approximation 𝑝′′(𝑤) ≈
௣ᇲ(௭ೖషభ)ି௣ᇱ(௪)

௭ೖషభି௪
 

 
Now we have everything we need to determine when to switch to stage 2. 
 
 

The C++ code 
The C++ code below finds the Polynomial roots with Polynomial real coefficients using the 
Halley method. There are only very few changes made to the Newton version to implement the 
Halley method. The few lines of code are all marked with a comment // Halley. See [1] for 
details. 
 
/* 
 ******************************************************************************* 
 * 
 *                       Copyright (c) 2023 
 *                       Henrik Vestermark 
 *                       Denmark, USA 
 * 
 *                       All Rights Reserved 
 * 
 *   This source file is subject to the terms and conditions of 
 *   Henrik Vestermark Software License Agreement which restricts the manner 
 *   in which it may be used. 
 * 
 ******************************************************************************* 
*/ 
 
/* 
 ******************************************************************************* 
 * 
 * Module name     :   Halley.cpp 
 * Module ID Nbr   : 
 * Description     :   Solve n degree polynomial using Halley's method 
 * -------------------------------------------------------------------------- 
 * Change Record   : 
 * 
 * Version Author/Date  Description of changes 
 * -------  ------------- ---------------------- 
 * 01.01 HVE/24Sep2023 Initial release 
 * 
 * End of Change Record 
 * -------------------------------------------------------------------------- 
*/ 
 
// define version string  



Fast Polynomial Root Finder  - Part Three 

Page | 8    24 October 2023 
 

static char _VHALLEY_[] = "@(#)testHalley.cpp 01.01 -- Copyright (C) Henrik Vestermark"; 
 
#include <algorithm> 
#include <vector> 
#include <complex> 
#include <iostream> 
#include <functional> 
 
using namespace std; 
 
constexpr int       MAX_ITER = 50; 
 
// Find all polynomial zeros using a modified Halley method 
// 1) Eliminate all simple roots (roots equal to zero) 
// 2) Find a suitable starting point 
// 3) Find a root using the Halley method 
// 4) Divide the root up in the polynomial reducing its order with one 
// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the 
remaining one or two roots are found by the direct formula 
// Notice: 
//      The coefficients for p(x) is stored in descending order. coefficients[0] is 
a(n)x^n, coefficients[1] is a(n-1)x^(n-1),...,  coefficients[n-1] is a(1)x, 
coefficients[n] is a(0) 
// 
static vector<complex<double>> PolynomialRootsHalley(const vector<double>& coefficients) 
{ 
    struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; }; 
    const complex<double> complexzero(0.0);  // Complex zero (0+i0) 
    size_t n;       // Size of Polynomial p(x)   
    eval pz;        // P(z) 
    eval pzprev;    // P(zprev) 
    eval p1z;       // P'(z) 
    eval p1zprev;   // P'(zprev) 
    complex<double> z;      // Use as temporary variable 
    complex<double> dz;     // The current stepsize dz 
    int itercnt;    // Hold the number of iterations per root 
    vector<complex<double>> roots;  // Holds the roots of the Polynomial 
    vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z) 
 
    copy(coefficients.begin(), coefficients.end(), coeff.begin()); 
    // Step 1 eliminate all simple roots 
    for (n = coeff.size() - 1; n > 0 && coeff.back() == 0.0; --n) 
        roots.push_back(complexzero);  // Store zero as the root 
 
    // Compute the next starting point based on the polynomial coefficients 
    // A root will always be outside the circle from the origin and radius min 
    auto startpoint = [&](const vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        double a0 = log(abs(a.back())); 
        double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n)); 
 
        for (size_t i = 1; i < n; i++) 
            if (a[i] != 0.0) 
            { 
                double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i)); 
                if (tmp < min) 
                    min = tmp; 
            } 
 
        return min * 0.5; 
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    }; 
 
    // Evaluate a polynomial with real coefficients a[] at a complex point z and 
    // return the result  
    // This is Horner's methods avoiding complex arithmetic 
    auto horner = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double s = 0.0; 
        double r = a[0]; 
        eval e; 
 
        for (size_t i = 1; i < n; i++) 
        { 
            double t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
        } 
 
        e.z = z; 
        e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r); 
        e.apz = abs(e.pz); 
        return e; 
    }; 
 
    // Calculate an upper bound for the rounding errors performed in a 
    // polynomial with real coefficient a[] at a complex point z.  
    // (Adam's test) 
    auto upperbound = [](const vector<double>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double p = -2.0 * z.real(); 
        double q = norm(z); 
        double u = sqrt(q); 
        double s = 0.0; 
        double r = a[0]; 
        double e = fabs(r) * (3.5 / 4.5); 
        double t; 
 
        for (size_t i = 1; i < n; i++) 
        { 
            t = a[i] - p * r - q * s; 
            s = r; 
            r = t; 
            e = u * e + fabs(t); 
        } 
        t = a[n] + z.real() * r - q * s; 
        e = u * e + fabs(t); 
        e = (4.5 * e - 3.5 * (fabs(t) + fabs(r) * u) + 
            fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 
1); 
 
        return e; 
    }; 
 
    // Do Newton iteration for polynomial order higher than 2 
    for (; n > 2; --n) 
    { 
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        const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times 
larger than the previous step size 
        const complex<double> rotation = complex<double>(0.6, 0.8);  // Rotation amount 
        double r;              // Current radius 
        double rprev;          // Previous radius 
        double eps;            // The iteration termination value 
        bool stage1 = true;    // By default it start the iteration in stage1 
        int steps = 1;         // Multisteps if > 1 
        eval p2z;              // P''(z) 
        vector<double> coeffprime;   // vector holding the prime coefficients 
        vector<double> coeffprime2;  // Halley vector holding both the prime and double 
prime coefficients 
 
        // Calculate coefficients of p'(x) 
        for (int i = 0; i < n; i++) 
            coeffprime.push_back(coeff[i] * double(n - i)); 
        // Calculate coefficients of p''(x) 
        for (int i = 0; i < n-1; i++)       // Halley 
            coeffprime2.push_back(coeffprime[i] * double(n-i-1));   // Halley  
 
        // Step 2 find a suitable starting point z 
        rprev = startpoint(coeff);      // Computed startpoint 
        z = coeff[n - 1] == 0.0 ? complex<double>(1.0) : complex<double>(-coeff[n] / 
coeff[n - 1]); 
        z *= complex<double>(rprev) / abs(z); 
 
        // Setup the iteration 
        // Current P(z) 
        pz = horner(coeff, z); 
 
        // pzprev which is the previous z or P(0) 
        pzprev.z = complex<double>(0); 
        pzprev.pz = coeff[n]; 
        pzprev.apz = abs(pzprev.pz); 
 
        // p1zprev P'(0) is the P'(0) 
        p1zprev.z = pzprev.z; 
        p1zprev.pz = coeff[n - 1];       // P'(0) 
        p1zprev.apz = abs(p1zprev.pz); 
 
        // Set previous dz and calculate the radius of operations. 
        dz = pz.z;      // dz=z-zprev=z since zprev==0 
        r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size 
allowed 
        // Preliminary eps computed at point P(0) by a crude estimation 
        eps = 2 * n * pzprev.apz * pow((double)_DBL_RADIX, -DBL_MANT_DIG); 
 
        // Start iteration and stop if z doesn't change or apz <= eps 
        // we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a 
root 
        for (itercnt = 0; pz.z + dz != pz.z && pz.apz > eps && itercnt < MAX_ITER; 
itercnt++) 
        { 
            complex<double> halleyfactor; 
            complex<double> newtondz; 
            // Calculate current P'(z) 
            p1z = horner(coeffprime, pz.z); 
            if (p1z.apz == 0.0)                 // P'(z)==0 then rotate and try again 
                dz *= rotation * complex<double>(Max_stepsize);  // Multiply with 5 to 
get away from saddlepoint 
            else 
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            { 
                dz = pz.pz / p1z.pz;  // next Newton step dz 
                // Calculate hte Halley factor  
                // Calculate current P''(z) 
                p2z = horner(coeffprime2, pz.z);        // Halley 
                // Calculate the Halley factor 
                halleyfactor = complex<double>(1.0) - complex<double>(0.5) * dz * 
(p2z.pz / p1z.pz); // Halley 
                newtondz = dz;              // Halley. Save Newton step size 
                dz /= halleyfactor;         // Halley step size 
 
                // Check the Magnitude of Halley's step 
                r = abs(dz); 
                if (r > rprev) // Large than 5 times the previous step size 
                {   // then rotate and adjust step size to prevent wild step size near 
P'(z) close to zero 
                    dz *= rotation * complex<double>(rprev / r); 
                    r = abs(dz); 
                } 
                rprev = r * Max_stepsize;  // Save 5 times the current step size for the 
next iteration check of reasonable step size 
                 
                // Calculate if stage1 is true or false. Stage1 is false if the 
Newton/Halley converge otherwise true 
                z = (p1zprev.pz - p1z.pz) / (pzprev.z - pz.z); 
                stage1 = (abs(z) / p1z.apz > p1z.apz / pz.apz / 4) || (steps != 1); 
            } 
            // Step accepted. Save pz in pzprev 
            pzprev = pz; 
 
            z = pzprev.z - dz;      // Next z 
            pz = horner(coeff, z); //ff = pz.apz; 
            steps = 1; 
            if (stage1) 
            {  // Try multiple steps or shorten steps depending if P(z) is an 
improvement or not P(z)<P(zprev) 
                bool div2; 
                complex<double> zn, dzn=dz; 
                eval npz; 
 
                zn = pz.z; 
                steps++; 
                for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps) 
                { 
                    if (div2 == true) 
                    {  // Shorten steps 
                        dz *= complex<double>(0.5); 
                        zn = pzprev.z - dz; 
                    } 
                    else 
                    { 
                        halleyfactor = complex<double>((steps+1.0)/(2.0*steps)) - 
complex<double>(0.5) * newtondz * p2z.pz / p1z.pz; // Halley 
                        zn = pzprev.z - newtondz / halleyfactor;  // Halley try another 
step in the same direction 
      } 
                    // Evaluate new try step 
                    npz = horner(coeff, zn); 
                    if (npz.apz >= pz.apz) 
                    { 
                        --steps; break; // Break if no improvement 
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                    } 
 
                    // Improved => accept step and try another round of step 
                    pz = npz; 
                    dz = dzn; 
 
                    if (div2 == true && steps == 3) 
                    {   // To many shorten steps => try another direction and break 
                        dz *= rotation; 
                        z = pzprev.z - dz; 
                        pz = horner(coeff, z); 
                        break; 
                    } 
                } 
            } 
            else 
            {   // calculate the upper bound of error using Grant & Hitchins's test for 
complex coefficients 
                // Now that we are within the convergence circle. 
                eps = upperbound(coeff, pz.z); 
            } 
        } 
 
        // Real root forward deflation. 
        // 
        auto realdeflation = [&](vector<double>& a, const double x) 
        { 
            const size_t n = a.size() - 1; 
            double r = 0.0; 
 
            for (size_t i = 0; i < n; i++) 
                a[i] = r = r * x + a[i]; 
 
            a.resize(n);    // Remove the highest degree coefficients. 
        }; 
 
        // Complex root forward deflation for real coefficients 
        // 
        auto complexdeflation = [&](vector<double>& a, const complex<double> z) 
        { 
            const size_t n = a.size() - 1; 
            double r = -2.0 * z.real(); 
            double u = norm(z); 
 
            a[1] -= r * a[0]; 
            for (int i = 2; i < n - 1; i++) 
                a[i] = a[i] - r * a[i - 1] - u * a[i - 2]; 
 
            a.resize(n - 1); // Remove top 2 highest degree coefficients 
        }; 
 
        // Check if there is a very small residue in the imaginary part by trying 
        // to evaluate P(z.real). if that is less than P(z). We take that z.real() is a 
better root than z. 
        z = complex<double>(pz.z.real(), 0.0); 
        pzprev = horner(coeff, z); 
        if (pzprev.apz <= pz.apz) 
        { // real root  
            pz = pzprev; 
            // Save the root 
            roots.push_back(pz.z); 
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            realdeflation(coeff, pz.z.real()); 
        } 
        else 
        {   // Complex root 
            // Save the root 
            roots.push_back(pz.z); 
            roots.push_back(conj(pz.z)); 
            complexdeflation(coeff, pz.z); 
            --n; 
        } 
 
    }   // End Iteration 
 
    // Solve any remaining linear or quadratic polynomial 
    // For Polynomial with real coefficients a[],  
    // The complex solutions are stored in the back of the roots 
    auto quadratic = [&](const std::vector<double>& a) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> v; 
        double r; 
 
        // Notice that a[0] is !=0 since roots=zero has already been handle 
        if (n == 1) 
            roots.push_back(complex<double>(-a[1] / a[0], 0)); 
        else 
        { 
            if (a[1] == 0.0) 
            { 
                r = -a[2] / a[0]; 
                if (r < 0) 
                { 
                    r = sqrt(-r); 
                    v = complex<double>(0, r); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    r = sqrt(r); 
                    roots.push_back(complex<double>(r)); 
                    roots.push_back(complex<double>(-r)); 
                } 
            } 
            else 
            { 
                r = 1.0 - 4.0 * a[0] * a[2] / (a[1] * a[1]); 
                if (r < 0) 
                { 
                    v = complex<double>(-a[1] / (2.0 * a[0]), a[1] * sqrt(-r) / (2.0 * 
a[0])); 
                    roots.push_back(v); 
                    roots.push_back(conj(v)); 
                } 
                else 
                { 
                    v = complex<double>((-1.0 - sqrt(r)) * a[1] / (2.0 * a[0])); 
                    roots.push_back(v); 
                    v = complex<double>(a[2] / (a[0] * v.real())); 
                    roots.push_back(v); 
                } 
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            } 
        } 
        return; 
    }; 
 
    if (n > 0) 
        quadratic(coeff); 
 
    return roots; 
} 
 
 

Example 1. 
Here is an example of how the above source code is working. 
 
For the real Polynomial: 
+1x^4-10x^3+35x^2-50x+24 
Start Halley IteraƟon for Polynomial=+1x^4-10x^3+35x^2-50x+24 
 Stage 1=>Stop CondiƟon. |f(z)|<2.13e-14 
 Start    : z[1]=0.2 dz=2.40e-1 |f(z)|=1.4e+1 
IteraƟon: 1 
 Halley Step:  z[1]=0.8 dz=-5.86e-1 |f(z)|=1.4e+0 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-5.86e-1 |f(z)|=5.7e-1 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=1 dz=-5.86e-1 |f(z)|=1.0e+0 
         : No improvement=>Discard last try step 
IteraƟon: 2 
 Halley Step:  z[1]=1 dz=1.14e-1 |f(z)|=3.7e-2 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=0.9 dz=1.14e-1 |f(z)|=3.3e-1 
         : No improvement=>Discard last try step 
IteraƟon: 3 
 Halley Step:  z[1]=1 dz=6.16e-3 |f(z)|=3.4e-6 
 In Stage 2=>New Stop CondiƟon: |f(z)|<2.18e-14 
IteraƟon: 4 
 Halley Step:  z[1]=1 dz=5.65e-7 |f(z)|=7.1e-15 
 In Stage 2=>New Stop CondiƟon: |f(z)|<2.18e-14 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
Final Halley  z[1]=1 dz=5.65e-7 |f(z)|=7.1e-15 
AlteraƟon=0% Stage 1=50% Stage 2=50% 
 Deflate the real root z=0.9999999999999989 
Start Halley IteraƟon for Polynomial=+1x^3-9.000000000000002x^2+26.000000000000007x-24.00000000000002 
 Stage 1=>Stop CondiƟon. |f(z)|<1.60e-14 
 Start    : z[1]=0.5 dz=4.62e-1 |f(z)|=1.4e+1 
IteraƟon: 1 
 Halley Step:  z[1]=2 dz=-1.10e+0 |f(z)|=1.6e+0 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=2 dz=-1.10e+0 |f(z)|=1.8e-1 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=3 dz=-1.10e+0 |f(z)|=3.0e-1 
         : No improvement=>Discard last try step 
IteraƟon: 2 
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 Halley Step:  z[1]=2 dz=1.05e-1 |f(z)|=6.3e-3 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=2 dz=1.05e-1 |f(z)|=1.1e-1 
         : No improvement=>Discard last try step 
IteraƟon: 3 
 Halley Step:  z[1]=2 dz=3.15e-3 |f(z)|=1.1e-7 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.42e-14 
IteraƟon: 4 
 Halley Step:  z[1]=2 dz=5.55e-8 |f(z)|=3.6e-15 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.42e-14 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
Final Halley  z[1]=2 dz=5.55e-8 |f(z)|=3.6e-15 
AlteraƟon=0% Stage 1=50% Stage 2=50% 
 Deflate the real root z=2.00000000000001 
Solve Polynomial=+1x^2-6.999999999999991x+11.999999999999954 directly 
Using the Halley Method, the SoluƟons are: 
X1=0.9999999999999989 
X2=2.00000000000001 
X3=4.0000000000000115 
X4=2.9999999999999796 
 

 
And the iteration trail. Notice that the entire root search is happening on the real axis only. 
 

Example 2. 
The same example just with a double root at x=1. We see that each step is a double step in line 
with a multiplicity of 2 for the first root. 
 
For the real Polynomial: 
+1x^4-9x^3+27x^2-31x+12 
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Start Halley IteraƟon for Polynomial=+1x^4-9x^3+27x^2-31x+12 
 Stage 1=>Stop CondiƟon. |f(z)|<1.07e-14 
 Start    : z[1]=0.2 dz=1.94e-1 |f(z)|=6.9e+0 
IteraƟon: 1 
 Halley Step:  z[1]=0.7 dz=-4.81e-1 |f(z)|=8.2e-1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=0.9 dz=-4.81e-1 |f(z)|=4.6e-2 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=1 dz=-4.81e-1 |f(z)|=1.3e-1 
         : No improvement=>Discard last try step 
IteraƟon: 2 
 Halley Step:  z[1]=1 dz=-5.56e-2 |f(z)|=5.1e-3 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-5.56e-2 |f(z)|=6.1e-6 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=1 dz=-5.56e-2 |f(z)|=4.2e-3 
         : No improvement=>Discard last try step 
IteraƟon: 3 
 Halley Step:  z[1]=1 dz=-6.70e-4 |f(z)|=6.7e-7 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-6.70e-4 |f(z)|=1.2e-13 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=1 dz=-6.70e-4 |f(z)|=6.7e-7 
         : No improvement=>Discard last try step 
IteraƟon: 4 
 Halley Step:  z[1]=1 dz=-9.26e-8 |f(z)|=1.2e-14 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-9.26e-8 |f(z)|=1.8e-15 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=1 dz=-9.26e-8 |f(z)|=1.4e-14 
         : No improvement=>Discard last try step 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
Final Halley  z[1]=1 dz=-9.26e-8 |f(z)|=1.8e-15 
AlteraƟon=0% Stage 1=100% Stage 2=0% 
 Deflate the real root z=0.9999999984719479 
Start Halley IteraƟon for Polynomial=+1x^3-8.000000001528052x^2+19.000000010696365x-12.000000018336625 
 Stage 1=>Stop CondiƟon. |f(z)|<7.99e-15 
 Start    : z[1]=0.3 dz=3.16e-1 |f(z)|=6.8e+0 
IteraƟon: 1 
 Halley Step:  z[1]=0.9 dz=-6.21e-1 |f(z)|=4.0e-1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=1 dz=-6.21e-1 |f(z)|=1.2e+0 
         : No improvement=>Discard last try step 
IteraƟon: 2 
 Halley Step:  z[1]=1 dz=-6.32e-2 |f(z)|=7.2e-4 
 In Stage 2=>New Stop CondiƟon: |f(z)|<6.66e-15 
IteraƟon: 3 
 Halley Step:  z[1]=1 dz=-1.20e-4 |f(z)|=5.5e-12 
 In Stage 2=>New Stop CondiƟon: |f(z)|<6.66e-15 
IteraƟon: 4 
 Halley Step:  z[1]=1 dz=-9.16e-13 |f(z)|=8.9e-16 
 In Stage 2=>New Stop CondiƟon: |f(z)|<6.66e-15 
Stop Criteria saƟsfied aŌer 4 IteraƟons 
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Final Halley  z[1]=1 dz=-9.16e-13 |f(z)|=8.9e-16 
AlteraƟon=0% Stage 1=25% Stage 2=75% 
 Deflate the real root z=1.000000001528052 
Solve Polynomial=+1x^2-7x+12.000000000000002 directly 
Using the Halley Method, the SoluƟons are: 
X1=0.9999999984719479 
X2=1.000000001528052 
X3=3.999999999999997 
X4=3.0000000000000027 
 

Example 3. 
A test polynomial with both real and complex conjugated roots. 
 
For the real Polynomial: 
+1x^4-8x^3-17x^2-26x-40 
Start Halley IteraƟon for Polynomial=+1x^4-8x^3-17x^2-26x-40 
 Stage 1=>Stop CondiƟon. |f(z)|<3.55e-14 
 Start    : z[1]=-0.8 dz=-7.67e-1 |f(z)|=2.6e+1 
IteraƟon: 1 
 Halley Step:  z[1]=-2 dz=1.09e+0 |f(z)|=1.3e+1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=-2 dz=1.09e+0 |f(z)|=6.8e+1 
         : No improvement=>Discard last try step 
IteraƟon: 2 
 Halley Step:  z[1]=-2 dz=-2.03e-1 |f(z)|=1.1e-1 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.92e-14 
IteraƟon: 3 
 Halley Step:  z[1]=-2 dz=-2.11e-3 |f(z)|=1.3e-7 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.91e-14 
IteraƟon: 4 
 Halley Step:  z[1]=-2 dz=-2.46e-9 |f(z)|=2.8e-14 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.91e-14 
IteraƟon: 5 
 Halley Step:  z[1]=-2 dz=-5.34e-16 |f(z)|=0 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.91e-14 
Stop Criteria saƟsfied aŌer 5 IteraƟons 
Final Halley  z[1]=-2 dz=-5.34e-16 |f(z)|=0 
AlteraƟon=0% Stage 1=20% Stage 2=80% 
 Deflate the real root z=-1.650629191439388 
Start Halley IteraƟon for Polynomial=+1x^3-9.650629191439387x^2-1.0703897408530487x-24.233183447530717 
 Stage 1=>Stop CondiƟon. |f(z)|<1.61e-14 
 Start    : z[1]=-0.8 dz=-7.92e-1 |f(z)|=3.0e+1 
IteraƟon: 1 
 dz>dz0 (oversized iteraƟon step) =>Alter direcƟon: Old dz=4.8 New dz=(2.4+i3.2) 
 Halley Step:  z[1]=(-3-i3) dz=(2.38e+0+i3.17e+0) |f(z)|=2.6e+2 
 FuncƟon value increase=>try shorten the step 
 Try Step:  z[1]=(-2-i2) dz=(1.19e+0+i1.58e+0) |f(z)|=7.9e+1 
         : Improved=>ConƟnue stepping 
 Try Step:  z[1]=(-1-i0.8) dz=(5.94e-1+i7.92e-1) |f(z)|=4.3e+1 
         : Improved=>ConƟnue stepping 
         : Probably local saddlepoint=>Alter DirecƟon:  z[1]=(-0.7-i0.5) dz=(-1.39e-1+i4.75e-1) |f(z)|=2.6e+1 
IteraƟon: 2 
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 Halley Step:  z[1]=(-0.7-i2) dz=(5.75e-2+i1.39e+0) |f(z)|=2.4e+1 
 FuncƟon value decrease=>try mulƟple steps in that direcƟon 
 Try Step:  z[1]=(-0.7-i3) dz=(5.75e-2+i1.39e+0) |f(z)|=5.3e+1 
         : No improvement=>Discard last try step 
IteraƟon: 3 
 Halley Step:  z[1]=(-0.2-i2) dz=(-5.23e-1-i3.34e-1) |f(z)|=5.9e-1 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.35e-14 
IteraƟon: 4 
 Halley Step:  z[3]=(-0.175-i1.55) dz=(-1.38e-2+i1.26e-2) |f(z)|=2.2e-5 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.36e-14 
IteraƟon: 5 
 Halley Step:  z[7]=(-0.1746854-i1.546869) dz=(-2.17e-7-i6.69e-7) |f(z)|=3.6e-15 
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.36e-14 
Stop Criteria saƟsfied aŌer 5 IteraƟons 
Final Halley  z[7]=(-0.1746854-i1.546869) dz=(-2.17e-7-i6.69e-7) |f(z)|=3.6e-15 
AlteraƟon=40% Stage 1=40% Stage 2=60% 
 Deflate the complex conjugated root z=(-0.17468540428030604-i1.5468688872313963) 
Solve Polynomial=+1x-10 directly 
Using the Halley Method, the SoluƟons are: 
X1=-1.650629191439388 
X2=(-0.17468540428030604-i1.5468688872313963) 
X3=(-0.17468540428030604+i1.5468688872313963) 
X4=10 
 

 
The first root is found on the real axis while the second root is found as a complex conjugated 
root.  
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Householder 3rd order method 
Householder has generalized the higher-order methods. E.g., Householder's first order is the 
Newton method. Householder second order is the Halley method.  
 
The Householder’s 3rd order method uses the following iteration: 
 

𝑥௡ାଵ = 𝑥௡ −
6𝑃(𝑥௡)𝑃′(𝑥௡)ଶ − 3𝑃(𝑥௡)ଶ𝑃′′(𝑥௡)

6𝑃′(𝑥௡)ଷ − 6𝑃(𝑥௡)𝑃ᇱ(𝑥௡)𝑃ᇱᇱ(𝑥௡) + 𝑃(𝑥௡)ଶ𝑃′′′(𝑥௡)
 

 
As you can see above the method looks intimidating, but offers 4th-order convergence, however, 
requires that you also compute the 3rd derivative of the polynomial. 
 
Substituting:  
 

𝑡 =
𝑃(𝑥௡)

𝑃′(𝑥௡)
, 𝑢 =

𝑃′′(𝑥௡)

𝑃′(𝑥௡)
, 𝑣 =

𝑃′′′(𝑥௡)

𝑃′(𝑥௡)
 

 
 We can now write the householder’s 3rd order as follows: 
 

𝑥௡ାଵ = 𝑥௡ −
𝑡(1 − 0.5𝑡𝑢)

1 − 𝑡(𝑢 −
𝑣𝑡
6

)
 

 
Characteristic Convergence order Efficiency index 
Householder 3rd  4 

4
ଵ
ସ = 1.41 

 
Householder 3rd order has an efficiency index of 1.41, in line with both Newton and Halley. For 
each iteration the number of correct digits quadruple.  
 
Equivalent to the Newton method, handling of multiple roots can be done using the Householder 

3rd order reduction factor of 
ଷ

௠ାଶ
 by multiplier the step size with the reverse factor we should 

ensure a quartic convergence rate even for multiple roots. 
 
Our modified Householder 3rd order will then be: 
 

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 2

3
൥

6𝑃(𝑥௡)𝑃′(𝑥𝑛)
2

− 3𝑃(𝑥௡)ଶ𝑃ᇱᇱ(𝑥௡)

6𝑃′(𝑥௡)ଷ − 6𝑃(𝑥௡)𝑃ᇱ(𝑥௡)𝑃ᇱᇱ(𝑥௡) + 𝑃(𝑥௡)ଶ𝑃ᇱᇱᇱ(𝑥௡)
൩ 

 
Or using the same substitution as before: 
 

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 2

3

𝑡(1 − 0.5𝑡𝑢)

1 − 𝑡(𝑢 −
𝑣𝑡
6

)
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From the walkthrough of the Halley iteration, it is clear that we can maintain the same 
framework and just replace the iteration step. E.g., out with the Halley step and in with the 
Householder 3rd order step.  
 
 

How the higher orders method stacks up against each other 
 
To see how it works with the different methods let's see the method against a simple Polynomial. 
 

𝑃(𝑥) =  (𝑥 − 2)(𝑥 + 2)(𝑥 − 3)(𝑥 + 3) = 𝑥ସ − 13𝑥ଶ + 36 
 
The above-mentioned Polynomial is an easy one for most methods. Moreover, as you can see the 
higher-order method requires fewer numbers of iterations. However, also more work to be done 
per iteration.  
 
Method Newton Halley Household 3rd  
Iterations Root Root Root 
Start guess 0.8320502943378436 0.8320502943378436 0.8320502943378436 

1 2.2536991416170737  1.6933271400922734 2.033435992687734  
 

2 1.9233571772166798 1.9899385955094577 1.9999990577501767 

3 1.9973306906698116 1.9999993042509177 2 

4 1.999996107736492 2  

5 1.9999999999916678   

6 2   

 
Here is another example. Consider the polynomial with 6 roots at 1,2,3,4,5,6. 
 
P(x)=x6-21x5+175x4-735x3+1624x2-1764x+720 
 
Method Newton Halley Householder 3rd  
Total iterations 21 16 14 
Ratio 1 0.76 0.67 
Convergence order 2 3 4 
Convergence ratio 1 0.67 0.5 

 
Listed is the total number of iterations for each method. Halley ideally should do the job with 
only 67% of the required number of iterations for Newton. However, it required 76%. Same for 
Householder 3rd order that required 67% but ideally should be half the number of Newton 
iterations. The reason that it does not match up is that convergence order only applies when close 
to a root. It typically takes a few iterations to get near the root and that is kind of wandering 
around in the complex plane searching for some tracking to the root. See the below image of the 
measured convergence order for each method. When tracking happens, each method follows its 
convergence order.  
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Other Higher order method 
 
There exist other higher-order methods that try to avoid calculating the 2nd and 3rd derivatives in 
a multi-point schema. For example, the Ostrowski multi-point method has an efficient index of 
1.59 and is a 4th-order method. However, you can even find other methods that generate 5, 6, 7, 
and even 9th order without the use of a derivative. One of the drawbacks is that for many of the 
multi-point methods, no modified version can deal efficiently with multiple roots.  
Despite the multiple root drawbacks, part 6 will deal with the Ostrowski multi-point method and 
see how we still can incorporate handling of multiple roots efficiently. 
 
In part 4 we go through Laguerre’s method and in part 5 we go through one of the simultaneous 
methods (Weierstrass or Durand-Kerner) that iterate towards all the roots simultaneously. 
 

Recommendation 
Since the efficiency index is comparable for these three methods there are no advantages to using 
either the Halley or the Householder 3rd order method compared to Newton method. I 
recommend sticking with the Newton method presented in Parts One and Two.  
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Conclusion 
We have presented a refined Halley method, building upon the framework established in parts 
one and two, to efficiently and stably find roots of polynomials with real coefficients. While Part 
One focused on polynomials with complex coefficients—where roots could still be real—this 
second part delves into real coefficients polynomials. Part Three explores adjustments needed for 
higher-order methods, such as Halley's method, while Part Four will demonstrate the ease of 
integrating alternative methods like Laguerre's methods into the same framework. A web-based 
polynomial solver showcasing these various methods is available for further exploration and can 
be found on Polynomial roots that demonstrate many of these methods in action. 
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