
Fast Polynomial Root Finder - Part Three

Page | 1 24 October 2023

Fast Polynomial Root Finder - Part Three.
By Henrik Vestermark (hve@hvks.com)

Abstract:
We elaborated in the part three paper on higher order method for finding Polynomial roots and
devised a modified Halley method dealing efficiently with Polynomials with real coefficients.
This paper is part of a multi-series of papers on how to use the same framework to implement
different root finder methods.

Introduction:
In the first paper (part one), we developed a highly efficient and robust polynomial root-finder
based on the Newton method, specifically designed for complex polynomial coefficients. In part
two we elaborated on the change to dealing with Polynomials with real coefficients. In part three
we looked at using the same framework to implement higher-order methods and discussed if we
gain any advantages from using higher-order methods compared to the standard Newton method.

Fast Polynomial Root Finder - Part Three

Page | 2 24 October 2023

Contents
Fast Polynomial Root Finder - Part Three. ... 1

Abstract: .. 1

Introduction: .. 1

Higher order method. .. 2

Comparing Newton and Halley .. 5

What to Modify? ... 5

The Implementation of the Halley Algorithm .. 5

The C++ code .. 7

Example 1. .. 14

Example 2. .. 15

Example 3. .. 17

Householder 3rd order method .. 19

How the higher orders method stacks up against each other .. 20

Other Higher order method ... 22

Recommendation .. 22

Conclusion .. 23

Reference .. 23

Higher order method.
The Newton method has a convergence rate of two meaning that for every iteration you double
the number of correct digits. However, there exist other higher-order methods that have a
convergence rate of 3, 4, 5 6, or even higher. One of them is the Halley method which has a
convergence rate of three (or cubic). The cubic convergence rate indicates that we triple the
correct number of digits per iteration. The Halley method uses an iteration based on the
following recurrence:

𝑥௡ାଵ = 𝑥௡ −
2𝑃(𝑥௡)𝑃′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ − 𝑃(𝑥௡)𝑃′′(𝑥௡)

Compared to our modified Newton:

𝑥௡ାଵ = 𝑥௡ − 𝑚
𝑃(𝑥௡)

𝑃′(𝑥௡)

Fast Polynomial Root Finder - Part Three

Page | 3 24 October 2023

We need to evaluate the second derivate of P(x) and do some extra arithmetic operations.

Or sometimes we can write the Halley iteration as:

𝑥௡ାଵ = 𝑥௡ −
𝑃(𝑥௡)

𝑃′(𝑥௡)
ቈ1 −

𝑃(𝑥௡)𝑃′′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ
቉

ିଵ

Where, 𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)
 is the usual Newton iteration multiplied with the Halley adjustment

of:

ቈ1 −
𝑃(𝑥௡)𝑃′′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ
቉

ିଵ

And are graphically shown below:

As for the Newton method, we don’t use this version since it will show the same weakness as the
original Newton step when dealing with roots with a multiplicity higher than 1 (multiple roots).

In [8] they present a modified formula dealing with multiple roots:

𝑥௡ାଵ = 𝑥௡ −
𝑃(𝑥௡)

𝑃′(𝑥௡)
ቈ
𝑚 + 1

2𝑚
−

1

2

𝑃(𝑥௡)

𝑃′(𝑥௡)

𝑃′′(𝑥௡)

𝑃′(𝑥௡)
቉

ିଵ

Since m represents the multiplicity of the root. It changes the Halley adjustment based on m, you
would have to recalculate the Halley adjustment for each m.
Below is an alternative slightly different modified version of the Halley method that also
maintains the cubic convergence rate even for multiple roots but where m is placed outside
making it easier to calculate since the Halley adjustment is unchanged.

Fast Polynomial Root Finder - Part Three

Page | 4 24 October 2023

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 1

2

2𝑃(𝑥௡)𝑃′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ − 𝑃(𝑥௡)𝑃′′(𝑥௡)

Alternatively, it is written in another way:

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 1

2

𝑃(𝑥௡)

𝑃′(𝑥௡)
ቈ1 −

𝑃(𝑥௡)𝑃′′(𝑥௡)

2𝑃ᇱ(𝑥௡)ଶ
቉

ିଵ

Both formulas will work and maintain cubic convergence.

Here is an example:

For the first root x1~ -1.65, we start at ~ -0.8 and iterate along the real axis towards the root at ~
-1.65. Since we never leave the real axis, we don’t have to see a miniscule imaginary part in the
result. The first root is deflated and we start a new search with the deflated polynomial x3-
9.650629191439387x2-1.0703897408530487x-24.233183447530717. We again start on the real
axis around ~ -0.8 but this time we are near a saddle point and rotate into the complex plane.
After 5 iterations we find the complex root ~ (-0.17-i1.54). We deflate the polynomial with its
complex and complex conjugated root and end up with a first-degree polynomial that we solve
directly and get x=10.

Fast Polynomial Root Finder - Part Three

Page | 5 24 October 2023

Comparing Newton and Halley

To compare different methods with others we can use a well-known efficiency index to see how
it stacks up against other derivative-based methods.

The efficiency index is 𝑞
భ

೛, where q is the method convergence order and p are the number of
polynomial evaluations for the method. For the Newton, method p is 2 since we need to evaluate
both P(z) and P’(z) per iteration, and the Newton method has a convergence order of q=2 so we

get Efficiency index= 2
భ

మ = 1.42

For the Halley method, we need to evaluate P(x), P’(x), and P’’(x) for each iteration, we get 3
భ

య =
1.44
Slightly larger than the Newton method but not enough that we should expect any measurable
gain from using the Halley method.

What to Modify?
Compared to the Newton method (part two) we can luckily reuse most of the code already
available with the Newton method.

From Part Two, the Steps Include:

1. Finding an initial point
2. Executing the Newton iteration, including polynomial evaluation via the Horner method
3. Calculating the final upper bound
4. Polynomial deflation
5. Solving the quadratic equation

Ad 1,3,4,5) Will be identical and need no modification

Ad 2) We can use the Horned method unchanged to evaluate P(x), P’(x), and P’’(x). Although
we need to add another vector to hold the second derivative of P(x). The variable step size to
handle multiple roots can be changed from m to (m+1)/2m. Otherwise, we can again reuse the
variable step size or reduce the step size and show it in both parts one and two.

The Implementation of the Halley Algorithm
This is the same source as in part two except for the change needed to evaluate the second
derivative and perform the Halley step instead of the Newton step.

The implementation of this root finder follows the method as layout in Part One.

1) First, we eliminate simple roots (roots equal to zero)
2) Then we find a suitable starting point to start our Halley Iteration, this also includes

termination criteria based on an acceptable value of P(x) where we will stop the current
iteration.

Fast Polynomial Root Finder - Part Three

Page | 6 24 October 2023

3) Start the Halley iteration

a. The first step is to find the dxn=
௉(௫೙)

௉ᇱ(௫೙)
ቂ1 −

௉(௫೙)௉ᇱ (௫೙)

ଶ௉ᇲ(௫೙)మ
ቃ

ିଵ

and of course, decide what

should happen if P’(xn) is zero. When this condition arises, it is most often due to a
local minimum and the best course of action is to alter the direction with a factor
dxn=dxn(0.6+i0.8)k. This is equivalent to rotating the direction with an odd degree of
53 degrees and multiplying the direction with the factor k. A suitable value for k=5 is
reasonable when this happens.

b. Furthermore, it is easy to realize that if P’(xn)~0. You could get some unreasonable
step size of dxn and therefore introduce a limiting factor that reduces the current step
size if abs(dxn)>5·abs(dxn-1) than the previous iteration's step size. Again, you alter
the direction with dxn=dxn(0.6+i0.8)5(abs(dxn-1)/abs(dxn)) if that happens.

c. These two modifications (a and b) make his method very resilient and make it always
converge to a root.

d. The next issue is to handle the issue with multiplicity > 1 which will slow the third-
order convergence rate down to a linear convergence rate. After a suitable dxn is
found and a new xn+1=xn-dxn we then look to see if P(xn+1)>P(xn): If so we look at a
revised xn+1=xn-0.5dxn and if P(xn+1)≥P(xn) then he used the original xn+1 as the new
starting point for the next iteration. If not then we accept xn+1 as a better choice and
continue looking at a newly revised xn+1=xn-0.25dxn. If on the other hand the new
P(xn+1)≥P(xn) we used the previous xn+1 as a new starting point for the next iterations.
If not then we assume we are nearing a new saddle point and the direction is altered
with dxn=dxn(0.6+i0.8) and we use xn+1=xn-dxn as the new starting point for the next
iteration.
if on the other hand P(xn+1)≤P(xn): Then we are looking in the right direction and we

then continue stepping in that direction using: 𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)
ቂ

௠ାଵ

ଶ௠
−

ଵ

ଶ

௉(௫೙)

௉ᇱ(௫೙)

௉ᇱᇱ(௫೙)

௉ᇱ(௫೙)
ቃ

ିଵ

 m=2,..,n as long as P(xn+1)≤P(xn) and use the best m for the next

iterations. The benefit of this process is that if there is a root with the multiplicity of
m then m will also be the best choice for the stepping size and this will maintain the
third-order convergence rate even for multiple roots.

4) Processes a-d continue until the stopping criteria are reached where after the root xn is
accepted and deflated up in the Polynomial. A new search for a root using the deflated
Polynomial is initiated.

In [2] they divide the iterations into two stages. Stage 1 & Stage 2. In stage 1 we are trying to get
into the convergence circle where we are sure that the Halley method will converge towards a
root. When we get into that circle, we automatically switch to stage 2. In stage 2 we skip step d)

and just use an unmodified Halley step: 𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)
ቂ1 −

ଵ

ଶ

௉(௫೙)

௉ᇱ(௫೙)

௉ᇱᇱ(௫೙)

௉ᇱ(௫೙)
ቃ

ିଵ

 until the

stopping criteria have been satisfied. In case we get outside the convergence circle, we switch
back to stage 1 and continue the iteration.
In [2] they use the following criteria to switch to stage 2 based on the theorem 7.1 from

Ostrowski [3] that states if K is a circle with center 𝑤 −
௉(௪)

௉ᇱ(௪)
 And radius ቚ

௉(௪)

௉ᇱ(௪)
ቚ

Then we have guarantee convergence if the following two conditions are satisfied:

Fast Polynomial Root Finder - Part Three

Page | 7 24 October 2023

 𝑝(𝑤)𝑝ᇱ(𝑤) ≠ 0 𝑎𝑛𝑑

2|
𝑝(𝑤)

𝑝′(𝑤)
| ∙ max

௭ఌ௄
|𝑝ᇱᇱ(𝑧)| ≤ |𝑝′(𝑤)|

Although this is originally the check for Newton convergence, we use it also for the Halley
iterations with initial value w will lead to a convergence of zero within the circle K. To simplify
the calculation we make 2 substitutes, since max

௭ఌ௄
|𝑝ᇱᇱ(𝑧)| ≈ |𝑝′′(𝑤)| and instead of p”(w) we

replace it with a difference approximation 𝑝′′(𝑤) ≈
௣ᇲ(௭ೖషభ)ି௣ᇱ(௪)

௭ೖషభି௪

Now we have everything we need to determine when to switch to stage 2.

The C++ code
The C++ code below finds the Polynomial roots with Polynomial real coefficients using the
Halley method. There are only very few changes made to the Newton version to implement the
Halley method. The few lines of code are all marked with a comment // Halley. See [1] for
details.

/*

 *
 * Copyright (c) 2023
 * Henrik Vestermark
 * Denmark, USA
 *
 * All Rights Reserved
 *
 * This source file is subject to the terms and conditions of
 * Henrik Vestermark Software License Agreement which restricts the manner
 * in which it may be used.
 *

*/

/*

 *
 * Module name : Halley.cpp
 * Module ID Nbr :
 * Description : Solve n degree polynomial using Halley's method
 * --
 * Change Record :
 *
 * Version Author/Date Description of changes
 * ------- ------------- ----------------------
 * 01.01 HVE/24Sep2023 Initial release
 *
 * End of Change Record
 * --
*/

// define version string

Fast Polynomial Root Finder - Part Three

Page | 8 24 October 2023

static char _VHALLEY_[] = "@(#)testHalley.cpp 01.01 -- Copyright (C) Henrik Vestermark";

#include <algorithm>
#include <vector>
#include <complex>
#include <iostream>
#include <functional>

using namespace std;

constexpr int MAX_ITER = 50;

// Find all polynomial zeros using a modified Halley method
// 1) Eliminate all simple roots (roots equal to zero)
// 2) Find a suitable starting point
// 3) Find a root using the Halley method
// 4) Divide the root up in the polynomial reducing its order with one
// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the
remaining one or two roots are found by the direct formula
// Notice:
// The coefficients for p(x) is stored in descending order. coefficients[0] is
a(n)x^n, coefficients[1] is a(n-1)x^(n-1),..., coefficients[n-1] is a(1)x,
coefficients[n] is a(0)
//
static vector<complex<double>> PolynomialRootsHalley(const vector<double>& coefficients)
{
 struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; };
 const complex<double> complexzero(0.0); // Complex zero (0+i0)
 size_t n; // Size of Polynomial p(x)
 eval pz; // P(z)
 eval pzprev; // P(zprev)
 eval p1z; // P'(z)
 eval p1zprev; // P'(zprev)
 complex<double> z; // Use as temporary variable
 complex<double> dz; // The current stepsize dz
 int itercnt; // Hold the number of iterations per root
 vector<complex<double>> roots; // Holds the roots of the Polynomial
 vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z)

 copy(coefficients.begin(), coefficients.end(), coeff.begin());
 // Step 1 eliminate all simple roots
 for (n = coeff.size() - 1; n > 0 && coeff.back() == 0.0; --n)
 roots.push_back(complexzero); // Store zero as the root

 // Compute the next starting point based on the polynomial coefficients
 // A root will always be outside the circle from the origin and radius min
 auto startpoint = [&](const vector<double>& a)
 {
 const size_t n = a.size() - 1;
 double a0 = log(abs(a.back()));
 double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n));

 for (size_t i = 1; i < n; i++)
 if (a[i] != 0.0)
 {
 double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i));
 if (tmp < min)
 min = tmp;
 }

 return min * 0.5;

Fast Polynomial Root Finder - Part Three

Page | 9 24 October 2023

 };

 // Evaluate a polynomial with real coefficients a[] at a complex point z and
 // return the result
 // This is Horner's methods avoiding complex arithmetic
 auto horner = [](const vector<double>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 double p = -2.0 * z.real();
 double q = norm(z);
 double s = 0.0;
 double r = a[0];
 eval e;

 for (size_t i = 1; i < n; i++)
 {
 double t = a[i] - p * r - q * s;
 s = r;
 r = t;
 }

 e.z = z;
 e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r);
 e.apz = abs(e.pz);
 return e;
 };

 // Calculate an upper bound for the rounding errors performed in a
 // polynomial with real coefficient a[] at a complex point z.
 // (Adam's test)
 auto upperbound = [](const vector<double>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 double p = -2.0 * z.real();
 double q = norm(z);
 double u = sqrt(q);
 double s = 0.0;
 double r = a[0];
 double e = fabs(r) * (3.5 / 4.5);
 double t;

 for (size_t i = 1; i < n; i++)
 {
 t = a[i] - p * r - q * s;
 s = r;
 r = t;
 e = u * e + fabs(t);
 }
 t = a[n] + z.real() * r - q * s;
 e = u * e + fabs(t);
 e = (4.5 * e - 3.5 * (fabs(t) + fabs(r) * u) +
 fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG +
1);

 return e;
 };

 // Do Newton iteration for polynomial order higher than 2
 for (; n > 2; --n)
 {

Fast Polynomial Root Finder - Part Three

Page | 10 24 October 2023

 const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times
larger than the previous step size
 const complex<double> rotation = complex<double>(0.6, 0.8); // Rotation amount
 double r; // Current radius
 double rprev; // Previous radius
 double eps; // The iteration termination value
 bool stage1 = true; // By default it start the iteration in stage1
 int steps = 1; // Multisteps if > 1
 eval p2z; // P''(z)
 vector<double> coeffprime; // vector holding the prime coefficients
 vector<double> coeffprime2; // Halley vector holding both the prime and double
prime coefficients

 // Calculate coefficients of p'(x)
 for (int i = 0; i < n; i++)
 coeffprime.push_back(coeff[i] * double(n - i));
 // Calculate coefficients of p''(x)
 for (int i = 0; i < n-1; i++) // Halley
 coeffprime2.push_back(coeffprime[i] * double(n-i-1)); // Halley

 // Step 2 find a suitable starting point z
 rprev = startpoint(coeff); // Computed startpoint
 z = coeff[n - 1] == 0.0 ? complex<double>(1.0) : complex<double>(-coeff[n] /
coeff[n - 1]);
 z *= complex<double>(rprev) / abs(z);

 // Setup the iteration
 // Current P(z)
 pz = horner(coeff, z);

 // pzprev which is the previous z or P(0)
 pzprev.z = complex<double>(0);
 pzprev.pz = coeff[n];
 pzprev.apz = abs(pzprev.pz);

 // p1zprev P'(0) is the P'(0)
 p1zprev.z = pzprev.z;
 p1zprev.pz = coeff[n - 1]; // P'(0)
 p1zprev.apz = abs(p1zprev.pz);

 // Set previous dz and calculate the radius of operations.
 dz = pz.z; // dz=z-zprev=z since zprev==0
 r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size
allowed
 // Preliminary eps computed at point P(0) by a crude estimation
 eps = 2 * n * pzprev.apz * pow((double)_DBL_RADIX, -DBL_MANT_DIG);

 // Start iteration and stop if z doesn't change or apz <= eps
 // we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a
root
 for (itercnt = 0; pz.z + dz != pz.z && pz.apz > eps && itercnt < MAX_ITER;
itercnt++)
 {
 complex<double> halleyfactor;
 complex<double> newtondz;
 // Calculate current P'(z)
 p1z = horner(coeffprime, pz.z);
 if (p1z.apz == 0.0) // P'(z)==0 then rotate and try again
 dz *= rotation * complex<double>(Max_stepsize); // Multiply with 5 to
get away from saddlepoint
 else

Fast Polynomial Root Finder - Part Three

Page | 11 24 October 2023

 {
 dz = pz.pz / p1z.pz; // next Newton step dz
 // Calculate hte Halley factor
 // Calculate current P''(z)
 p2z = horner(coeffprime2, pz.z); // Halley
 // Calculate the Halley factor
 halleyfactor = complex<double>(1.0) - complex<double>(0.5) * dz *
(p2z.pz / p1z.pz); // Halley
 newtondz = dz; // Halley. Save Newton step size
 dz /= halleyfactor; // Halley step size

 // Check the Magnitude of Halley's step
 r = abs(dz);
 if (r > rprev) // Large than 5 times the previous step size
 { // then rotate and adjust step size to prevent wild step size near
P'(z) close to zero
 dz *= rotation * complex<double>(rprev / r);
 r = abs(dz);
 }
 rprev = r * Max_stepsize; // Save 5 times the current step size for the
next iteration check of reasonable step size

 // Calculate if stage1 is true or false. Stage1 is false if the
Newton/Halley converge otherwise true
 z = (p1zprev.pz - p1z.pz) / (pzprev.z - pz.z);
 stage1 = (abs(z) / p1z.apz > p1z.apz / pz.apz / 4) || (steps != 1);
 }
 // Step accepted. Save pz in pzprev
 pzprev = pz;

 z = pzprev.z - dz; // Next z
 pz = horner(coeff, z); //ff = pz.apz;
 steps = 1;
 if (stage1)
 { // Try multiple steps or shorten steps depending if P(z) is an
improvement or not P(z)<P(zprev)
 bool div2;
 complex<double> zn, dzn=dz;
 eval npz;

 zn = pz.z;
 steps++;
 for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps)
 {
 if (div2 == true)
 { // Shorten steps
 dz *= complex<double>(0.5);
 zn = pzprev.z - dz;
 }
 else
 {
 halleyfactor = complex<double>((steps+1.0)/(2.0*steps)) -
complex<double>(0.5) * newtondz * p2z.pz / p1z.pz; // Halley
 zn = pzprev.z - newtondz / halleyfactor; // Halley try another
step in the same direction
 }
 // Evaluate new try step
 npz = horner(coeff, zn);
 if (npz.apz >= pz.apz)
 {
 --steps; break; // Break if no improvement

Fast Polynomial Root Finder - Part Three

Page | 12 24 October 2023

 }

 // Improved => accept step and try another round of step
 pz = npz;
 dz = dzn;

 if (div2 == true && steps == 3)
 { // To many shorten steps => try another direction and break
 dz *= rotation;
 z = pzprev.z - dz;
 pz = horner(coeff, z);
 break;
 }
 }
 }
 else
 { // calculate the upper bound of error using Grant & Hitchins's test for
complex coefficients
 // Now that we are within the convergence circle.
 eps = upperbound(coeff, pz.z);
 }
 }

 // Real root forward deflation.
 //
 auto realdeflation = [&](vector<double>& a, const double x)
 {
 const size_t n = a.size() - 1;
 double r = 0.0;

 for (size_t i = 0; i < n; i++)
 a[i] = r = r * x + a[i];

 a.resize(n); // Remove the highest degree coefficients.
 };

 // Complex root forward deflation for real coefficients
 //
 auto complexdeflation = [&](vector<double>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 double r = -2.0 * z.real();
 double u = norm(z);

 a[1] -= r * a[0];
 for (int i = 2; i < n - 1; i++)
 a[i] = a[i] - r * a[i - 1] - u * a[i - 2];

 a.resize(n - 1); // Remove top 2 highest degree coefficients
 };

 // Check if there is a very small residue in the imaginary part by trying
 // to evaluate P(z.real). if that is less than P(z). We take that z.real() is a
better root than z.
 z = complex<double>(pz.z.real(), 0.0);
 pzprev = horner(coeff, z);
 if (pzprev.apz <= pz.apz)
 { // real root
 pz = pzprev;
 // Save the root
 roots.push_back(pz.z);

Fast Polynomial Root Finder - Part Three

Page | 13 24 October 2023

 realdeflation(coeff, pz.z.real());
 }
 else
 { // Complex root
 // Save the root
 roots.push_back(pz.z);
 roots.push_back(conj(pz.z));
 complexdeflation(coeff, pz.z);
 --n;
 }

 } // End Iteration

 // Solve any remaining linear or quadratic polynomial
 // For Polynomial with real coefficients a[],
 // The complex solutions are stored in the back of the roots
 auto quadratic = [&](const std::vector<double>& a)
 {
 const size_t n = a.size() - 1;
 complex<double> v;
 double r;

 // Notice that a[0] is !=0 since roots=zero has already been handle
 if (n == 1)
 roots.push_back(complex<double>(-a[1] / a[0], 0));
 else
 {
 if (a[1] == 0.0)
 {
 r = -a[2] / a[0];
 if (r < 0)
 {
 r = sqrt(-r);
 v = complex<double>(0, r);
 roots.push_back(v);
 roots.push_back(conj(v));
 }
 else
 {
 r = sqrt(r);
 roots.push_back(complex<double>(r));
 roots.push_back(complex<double>(-r));
 }
 }
 else
 {
 r = 1.0 - 4.0 * a[0] * a[2] / (a[1] * a[1]);
 if (r < 0)
 {
 v = complex<double>(-a[1] / (2.0 * a[0]), a[1] * sqrt(-r) / (2.0 *
a[0]));
 roots.push_back(v);
 roots.push_back(conj(v));
 }
 else
 {
 v = complex<double>((-1.0 - sqrt(r)) * a[1] / (2.0 * a[0]));
 roots.push_back(v);
 v = complex<double>(a[2] / (a[0] * v.real()));
 roots.push_back(v);
 }

Fast Polynomial Root Finder - Part Three

Page | 14 24 October 2023

 }
 }
 return;
 };

 if (n > 0)
 quadratic(coeff);

 return roots;
}

Example 1.
Here is an example of how the above source code is working.

For the real Polynomial:
+1x^4-10x^3+35x^2-50x+24
Start Halley IteraƟon for Polynomial=+1x^4-10x^3+35x^2-50x+24
 Stage 1=>Stop CondiƟon. |f(z)|<2.13e-14
 Start : z[1]=0.2 dz=2.40e-1 |f(z)|=1.4e+1
IteraƟon: 1
 Halley Step: z[1]=0.8 dz=-5.86e-1 |f(z)|=1.4e+0
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=1 dz=-5.86e-1 |f(z)|=5.7e-1
 : Improved=>ConƟnue stepping
 Try Step: z[1]=1 dz=-5.86e-1 |f(z)|=1.0e+0
 : No improvement=>Discard last try step
IteraƟon: 2
 Halley Step: z[1]=1 dz=1.14e-1 |f(z)|=3.7e-2
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=0.9 dz=1.14e-1 |f(z)|=3.3e-1
 : No improvement=>Discard last try step
IteraƟon: 3
 Halley Step: z[1]=1 dz=6.16e-3 |f(z)|=3.4e-6
 In Stage 2=>New Stop CondiƟon: |f(z)|<2.18e-14
IteraƟon: 4
 Halley Step: z[1]=1 dz=5.65e-7 |f(z)|=7.1e-15
 In Stage 2=>New Stop CondiƟon: |f(z)|<2.18e-14
Stop Criteria saƟsfied aŌer 4 IteraƟons
Final Halley z[1]=1 dz=5.65e-7 |f(z)|=7.1e-15
AlteraƟon=0% Stage 1=50% Stage 2=50%
 Deflate the real root z=0.9999999999999989
Start Halley IteraƟon for Polynomial=+1x^3-9.000000000000002x^2+26.000000000000007x-24.00000000000002
 Stage 1=>Stop CondiƟon. |f(z)|<1.60e-14
 Start : z[1]=0.5 dz=4.62e-1 |f(z)|=1.4e+1
IteraƟon: 1
 Halley Step: z[1]=2 dz=-1.10e+0 |f(z)|=1.6e+0
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=2 dz=-1.10e+0 |f(z)|=1.8e-1
 : Improved=>ConƟnue stepping
 Try Step: z[1]=3 dz=-1.10e+0 |f(z)|=3.0e-1
 : No improvement=>Discard last try step
IteraƟon: 2

Fast Polynomial Root Finder - Part Three

Page | 15 24 October 2023

 Halley Step: z[1]=2 dz=1.05e-1 |f(z)|=6.3e-3
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=2 dz=1.05e-1 |f(z)|=1.1e-1
 : No improvement=>Discard last try step
IteraƟon: 3
 Halley Step: z[1]=2 dz=3.15e-3 |f(z)|=1.1e-7
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.42e-14
IteraƟon: 4
 Halley Step: z[1]=2 dz=5.55e-8 |f(z)|=3.6e-15
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.42e-14
Stop Criteria saƟsfied aŌer 4 IteraƟons
Final Halley z[1]=2 dz=5.55e-8 |f(z)|=3.6e-15
AlteraƟon=0% Stage 1=50% Stage 2=50%
 Deflate the real root z=2.00000000000001
Solve Polynomial=+1x^2-6.999999999999991x+11.999999999999954 directly
Using the Halley Method, the SoluƟons are:
X1=0.9999999999999989
X2=2.00000000000001
X3=4.0000000000000115
X4=2.9999999999999796

And the iteration trail. Notice that the entire root search is happening on the real axis only.

Example 2.
The same example just with a double root at x=1. We see that each step is a double step in line
with a multiplicity of 2 for the first root.

For the real Polynomial:
+1x^4-9x^3+27x^2-31x+12

Fast Polynomial Root Finder - Part Three

Page | 16 24 October 2023

Start Halley IteraƟon for Polynomial=+1x^4-9x^3+27x^2-31x+12
 Stage 1=>Stop CondiƟon. |f(z)|<1.07e-14
 Start : z[1]=0.2 dz=1.94e-1 |f(z)|=6.9e+0
IteraƟon: 1
 Halley Step: z[1]=0.7 dz=-4.81e-1 |f(z)|=8.2e-1
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=0.9 dz=-4.81e-1 |f(z)|=4.6e-2
 : Improved=>ConƟnue stepping
 Try Step: z[1]=1 dz=-4.81e-1 |f(z)|=1.3e-1
 : No improvement=>Discard last try step
IteraƟon: 2
 Halley Step: z[1]=1 dz=-5.56e-2 |f(z)|=5.1e-3
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=1 dz=-5.56e-2 |f(z)|=6.1e-6
 : Improved=>ConƟnue stepping
 Try Step: z[1]=1 dz=-5.56e-2 |f(z)|=4.2e-3
 : No improvement=>Discard last try step
IteraƟon: 3
 Halley Step: z[1]=1 dz=-6.70e-4 |f(z)|=6.7e-7
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=1 dz=-6.70e-4 |f(z)|=1.2e-13
 : Improved=>ConƟnue stepping
 Try Step: z[1]=1 dz=-6.70e-4 |f(z)|=6.7e-7
 : No improvement=>Discard last try step
IteraƟon: 4
 Halley Step: z[1]=1 dz=-9.26e-8 |f(z)|=1.2e-14
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=1 dz=-9.26e-8 |f(z)|=1.8e-15
 : Improved=>ConƟnue stepping
 Try Step: z[1]=1 dz=-9.26e-8 |f(z)|=1.4e-14
 : No improvement=>Discard last try step
Stop Criteria saƟsfied aŌer 4 IteraƟons
Final Halley z[1]=1 dz=-9.26e-8 |f(z)|=1.8e-15
AlteraƟon=0% Stage 1=100% Stage 2=0%
 Deflate the real root z=0.9999999984719479
Start Halley IteraƟon for Polynomial=+1x^3-8.000000001528052x^2+19.000000010696365x-12.000000018336625
 Stage 1=>Stop CondiƟon. |f(z)|<7.99e-15
 Start : z[1]=0.3 dz=3.16e-1 |f(z)|=6.8e+0
IteraƟon: 1
 Halley Step: z[1]=0.9 dz=-6.21e-1 |f(z)|=4.0e-1
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=1 dz=-6.21e-1 |f(z)|=1.2e+0
 : No improvement=>Discard last try step
IteraƟon: 2
 Halley Step: z[1]=1 dz=-6.32e-2 |f(z)|=7.2e-4
 In Stage 2=>New Stop CondiƟon: |f(z)|<6.66e-15
IteraƟon: 3
 Halley Step: z[1]=1 dz=-1.20e-4 |f(z)|=5.5e-12
 In Stage 2=>New Stop CondiƟon: |f(z)|<6.66e-15
IteraƟon: 4
 Halley Step: z[1]=1 dz=-9.16e-13 |f(z)|=8.9e-16
 In Stage 2=>New Stop CondiƟon: |f(z)|<6.66e-15
Stop Criteria saƟsfied aŌer 4 IteraƟons

Fast Polynomial Root Finder - Part Three

Page | 17 24 October 2023

Final Halley z[1]=1 dz=-9.16e-13 |f(z)|=8.9e-16
AlteraƟon=0% Stage 1=25% Stage 2=75%
 Deflate the real root z=1.000000001528052
Solve Polynomial=+1x^2-7x+12.000000000000002 directly
Using the Halley Method, the SoluƟons are:
X1=0.9999999984719479
X2=1.000000001528052
X3=3.999999999999997
X4=3.0000000000000027

Example 3.
A test polynomial with both real and complex conjugated roots.

For the real Polynomial:
+1x^4-8x^3-17x^2-26x-40
Start Halley IteraƟon for Polynomial=+1x^4-8x^3-17x^2-26x-40
 Stage 1=>Stop CondiƟon. |f(z)|<3.55e-14
 Start : z[1]=-0.8 dz=-7.67e-1 |f(z)|=2.6e+1
IteraƟon: 1
 Halley Step: z[1]=-2 dz=1.09e+0 |f(z)|=1.3e+1
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=-2 dz=1.09e+0 |f(z)|=6.8e+1
 : No improvement=>Discard last try step
IteraƟon: 2
 Halley Step: z[1]=-2 dz=-2.03e-1 |f(z)|=1.1e-1
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.92e-14
IteraƟon: 3
 Halley Step: z[1]=-2 dz=-2.11e-3 |f(z)|=1.3e-7
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.91e-14
IteraƟon: 4
 Halley Step: z[1]=-2 dz=-2.46e-9 |f(z)|=2.8e-14
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.91e-14
IteraƟon: 5
 Halley Step: z[1]=-2 dz=-5.34e-16 |f(z)|=0
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.91e-14
Stop Criteria saƟsfied aŌer 5 IteraƟons
Final Halley z[1]=-2 dz=-5.34e-16 |f(z)|=0
AlteraƟon=0% Stage 1=20% Stage 2=80%
 Deflate the real root z=-1.650629191439388
Start Halley IteraƟon for Polynomial=+1x^3-9.650629191439387x^2-1.0703897408530487x-24.233183447530717
 Stage 1=>Stop CondiƟon. |f(z)|<1.61e-14
 Start : z[1]=-0.8 dz=-7.92e-1 |f(z)|=3.0e+1
IteraƟon: 1
 dz>dz0 (oversized iteraƟon step) =>Alter direcƟon: Old dz=4.8 New dz=(2.4+i3.2)
 Halley Step: z[1]=(-3-i3) dz=(2.38e+0+i3.17e+0) |f(z)|=2.6e+2
 FuncƟon value increase=>try shorten the step
 Try Step: z[1]=(-2-i2) dz=(1.19e+0+i1.58e+0) |f(z)|=7.9e+1
 : Improved=>ConƟnue stepping
 Try Step: z[1]=(-1-i0.8) dz=(5.94e-1+i7.92e-1) |f(z)|=4.3e+1
 : Improved=>ConƟnue stepping
 : Probably local saddlepoint=>Alter DirecƟon: z[1]=(-0.7-i0.5) dz=(-1.39e-1+i4.75e-1) |f(z)|=2.6e+1
IteraƟon: 2

Fast Polynomial Root Finder - Part Three

Page | 18 24 October 2023

 Halley Step: z[1]=(-0.7-i2) dz=(5.75e-2+i1.39e+0) |f(z)|=2.4e+1
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=(-0.7-i3) dz=(5.75e-2+i1.39e+0) |f(z)|=5.3e+1
 : No improvement=>Discard last try step
IteraƟon: 3
 Halley Step: z[1]=(-0.2-i2) dz=(-5.23e-1-i3.34e-1) |f(z)|=5.9e-1
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.35e-14
IteraƟon: 4
 Halley Step: z[3]=(-0.175-i1.55) dz=(-1.38e-2+i1.26e-2) |f(z)|=2.2e-5
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.36e-14
IteraƟon: 5
 Halley Step: z[7]=(-0.1746854-i1.546869) dz=(-2.17e-7-i6.69e-7) |f(z)|=3.6e-15
 In Stage 2=>New Stop CondiƟon: |f(z)|<1.36e-14
Stop Criteria saƟsfied aŌer 5 IteraƟons
Final Halley z[7]=(-0.1746854-i1.546869) dz=(-2.17e-7-i6.69e-7) |f(z)|=3.6e-15
AlteraƟon=40% Stage 1=40% Stage 2=60%
 Deflate the complex conjugated root z=(-0.17468540428030604-i1.5468688872313963)
Solve Polynomial=+1x-10 directly
Using the Halley Method, the SoluƟons are:
X1=-1.650629191439388
X2=(-0.17468540428030604-i1.5468688872313963)
X3=(-0.17468540428030604+i1.5468688872313963)
X4=10

The first root is found on the real axis while the second root is found as a complex conjugated
root.

Fast Polynomial Root Finder - Part Three

Page | 19 24 October 2023

Householder 3rd order method
Householder has generalized the higher-order methods. E.g., Householder's first order is the
Newton method. Householder second order is the Halley method.

The Householder’s 3rd order method uses the following iteration:

𝑥௡ାଵ = 𝑥௡ −
6𝑃(𝑥௡)𝑃′(𝑥௡)ଶ − 3𝑃(𝑥௡)ଶ𝑃′′(𝑥௡)

6𝑃′(𝑥௡)ଷ − 6𝑃(𝑥௡)𝑃ᇱ(𝑥௡)𝑃ᇱᇱ(𝑥௡) + 𝑃(𝑥௡)ଶ𝑃′′′(𝑥௡)

As you can see above the method looks intimidating, but offers 4th-order convergence, however,
requires that you also compute the 3rd derivative of the polynomial.

Substituting:

𝑡 =
𝑃(𝑥௡)

𝑃′(𝑥௡)
, 𝑢 =

𝑃′′(𝑥௡)

𝑃′(𝑥௡)
, 𝑣 =

𝑃′′′(𝑥௡)

𝑃′(𝑥௡)

 We can now write the householder’s 3rd order as follows:

𝑥௡ାଵ = 𝑥௡ −
𝑡(1 − 0.5𝑡𝑢)

1 − 𝑡(𝑢 −
𝑣𝑡
6

)

Characteristic Convergence order Efficiency index
Householder 3rd 4

4
ଵ
ସ = 1.41

Householder 3rd order has an efficiency index of 1.41, in line with both Newton and Halley. For
each iteration the number of correct digits quadruple.

Equivalent to the Newton method, handling of multiple roots can be done using the Householder

3rd order reduction factor of
ଷ

௠ାଶ
 by multiplier the step size with the reverse factor we should

ensure a quartic convergence rate even for multiple roots.

Our modified Householder 3rd order will then be:

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 2

3
൥

6𝑃(𝑥௡)𝑃′(𝑥𝑛)
2

− 3𝑃(𝑥௡)ଶ𝑃ᇱᇱ(𝑥௡)

6𝑃′(𝑥௡)ଷ − 6𝑃(𝑥௡)𝑃ᇱ(𝑥௡)𝑃ᇱᇱ(𝑥௡) + 𝑃(𝑥௡)ଶ𝑃ᇱᇱᇱ(𝑥௡)
൩

Or using the same substitution as before:

𝑥௡ାଵ = 𝑥௡ −
𝑚 + 2

3

𝑡(1 − 0.5𝑡𝑢)

1 − 𝑡(𝑢 −
𝑣𝑡
6

)

Fast Polynomial Root Finder - Part Three

Page | 20 24 October 2023

From the walkthrough of the Halley iteration, it is clear that we can maintain the same
framework and just replace the iteration step. E.g., out with the Halley step and in with the
Householder 3rd order step.

How the higher orders method stacks up against each other

To see how it works with the different methods let's see the method against a simple Polynomial.

𝑃(𝑥) = (𝑥 − 2)(𝑥 + 2)(𝑥 − 3)(𝑥 + 3) = 𝑥ସ − 13𝑥ଶ + 36

The above-mentioned Polynomial is an easy one for most methods. Moreover, as you can see the
higher-order method requires fewer numbers of iterations. However, also more work to be done
per iteration.

Method Newton Halley Household 3rd
Iterations Root Root Root
Start guess 0.8320502943378436 0.8320502943378436 0.8320502943378436

1 2.2536991416170737 1.6933271400922734 2.033435992687734

2 1.9233571772166798 1.9899385955094577 1.9999990577501767

3 1.9973306906698116 1.9999993042509177 2

4 1.999996107736492 2

5 1.9999999999916678

6 2

Here is another example. Consider the polynomial with 6 roots at 1,2,3,4,5,6.

P(x)=x6-21x5+175x4-735x3+1624x2-1764x+720

Method Newton Halley Householder 3rd
Total iterations 21 16 14
Ratio 1 0.76 0.67
Convergence order 2 3 4
Convergence ratio 1 0.67 0.5

Listed is the total number of iterations for each method. Halley ideally should do the job with
only 67% of the required number of iterations for Newton. However, it required 76%. Same for
Householder 3rd order that required 67% but ideally should be half the number of Newton
iterations. The reason that it does not match up is that convergence order only applies when close
to a root. It typically takes a few iterations to get near the root and that is kind of wandering
around in the complex plane searching for some tracking to the root. See the below image of the
measured convergence order for each method. When tracking happens, each method follows its
convergence order.

Fast Polynomial Root Finder - Part Three

Page | 21 24 October 2023

Fast Polynomial Root Finder - Part Three

Page | 22 24 October 2023

Other Higher order method

There exist other higher-order methods that try to avoid calculating the 2nd and 3rd derivatives in
a multi-point schema. For example, the Ostrowski multi-point method has an efficient index of
1.59 and is a 4th-order method. However, you can even find other methods that generate 5, 6, 7,
and even 9th order without the use of a derivative. One of the drawbacks is that for many of the
multi-point methods, no modified version can deal efficiently with multiple roots.
Despite the multiple root drawbacks, part 6 will deal with the Ostrowski multi-point method and
see how we still can incorporate handling of multiple roots efficiently.

In part 4 we go through Laguerre’s method and in part 5 we go through one of the simultaneous
methods (Weierstrass or Durand-Kerner) that iterate towards all the roots simultaneously.

Recommendation
Since the efficiency index is comparable for these three methods there are no advantages to using
either the Halley or the Householder 3rd order method compared to Newton method. I
recommend sticking with the Newton method presented in Parts One and Two.

Fast Polynomial Root Finder - Part Three

Page | 23 24 October 2023

Conclusion
We have presented a refined Halley method, building upon the framework established in parts
one and two, to efficiently and stably find roots of polynomials with real coefficients. While Part
One focused on polynomials with complex coefficients—where roots could still be real—this
second part delves into real coefficients polynomials. Part Three explores adjustments needed for
higher-order methods, such as Halley's method, while Part Four will demonstrate the ease of
integrating alternative methods like Laguerre's methods into the same framework. A web-based
polynomial solver showcasing these various methods is available for further exploration and can
be found on Polynomial roots that demonstrate many of these methods in action.

Reference

1. H. Vestermark. A practical implementation of Polynomial root finders. Practical
implementation of Polynomial root finders vs 7.docx (www.hvks.com)

2. Madsen. A root-finding algorithm based on Newton Method, Bit 13 (1973) 71-75.
3. A. Ostrowski, Solution of equations and systems of equations, Academic Press, 1966.
4. Wikipedia Horner’s Method: https://en.wikipedia.org/wiki/Horner%27s_method
5. Adams, D A stopping criterion for polynomial root finding.

Communication of the ACM Volume 10/Number 10/ October 1967 Page 655-658
6. Grant, J. A. & Hitchins, G D. Two algorithms for the solution of polynomial equations to

limiting machine precision. The Computer Journal Volume 18 Number 3, pages 258-264
7. Wilkinson, J H, Rounding errors in Algebraic Processes, Prentice-Hall Inc, Englewood

Cliffs, NJ 1963
8. McNamee, J.M., Numerical Methods for Roots of Polynomials, Part I & II, Elsevier,

Kidlington, Oxford 2009
9. H. Vestermark, “A Modified Newton and higher orders Iteration for multiple roots.”,

www.hvks.com/Numerical/papers.html
10. M.A. Jenkins & J.F. Traub, ”A three-stage Algorithm for Real Polynomials using

Quadratic iteration”, SIAM J Numerical Analysis, Vol. 7, No.4, December 1970.

